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Large-scale flow and spiral core instability in Rayleigh-Bénard convection
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The spiral core instability, observed in large aspect-ratio Rayleigh-Be´nard convection, is studied numerically
in the framework of the Swift-Hohenberg equation coupled to a large-scale flow. It is shown that the instability
leads to nontrivial core dynamics and is driven by the self-generated vorticity. Moreover, the recently reported
transition from spirals to hexagons near the core is shown to occur only in the presence of a nonvariational
nonlinearity, and is linked to the spiral core instability. Qualitative agreement between the simulations and the
experiments is demonstrated.@S1063-651X~97!51305-5#

PACS number~s!: 47.54.1r, 47.20.Hw, 05.40.1j, 47.27.Te
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One of the most intriguing and unexpected recent disc
eries in natural pattern formation is the experimental obs
vation of spatiotemporally disordered spiral and target p
terns@1,2# in large aspect-ratio Rayleigh-Be´nard convection
~RBC! in Boussinesq fluids, in a parameter range where p
viously only rolls were known to be stable@3#. This regime
is characterized by the spontaneous and continuous e
gence and annihilation of large extended spiral and ta
patterns. Theoretically, these novel states were success
reproduced both by numerical simulations of the Sw
Hohenberg~SH! model coupled to a self-consistent larg
scale flow@see Eqs.~1!–~3!# @4,5#, as well as by the integra
tion of the full thermally driven Navier-Stokes equations
the Boussinesq approximation@6#. It is currently postulated
that the large-scale flow is necessary for the spatiotemp
chaotic state with many spirals and targets@4–7#. In a first
attempt to understand these states, Cross and Tu propo
physical mechanism based on wave-number frustration
which defects have an invasive nature and create spirals
targets @7#. In detailed experiments by Assenheimer a
Steinberg@8,9#, and more recently by Plapp and Bodensch
@10#, a new instability of spiral cores of single- and mul
armed spirals was observed. The striking feature of this
stability is that spiral cores oscillate periodically with a fr
quency considerably higher than the frequency of the ove
spiral rotation@10#. For yet higher supercriticality, a nove
transition from spirals to hexagons was found in which u
and down-flow hexagons may coexist@8,9#. These hexagons
often invade the background RBC pattern, originati
mainly from extended pattern cores.

Here, we present numerical simulations of the spiral c
dynamics performed in the framework of the SH mod
coupled to a self-consistent large-scale flow. We show
this simple model exhibits both the spiral core instability a
the spiral-to-hexagon transition, and that both are linked
the large-scale flow. In the case of the spiral core instabi
we demonstrate that the velocity field generated by the sp
tip decreases the local wave number and eventually dr
the tip into the Eckhaus unstable region. Phase slips t
occur, locally winding the spiral up and returning the wa
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number into the stable domain. This instability is found
have a well-defined threshold in Rayleigh and Prandtl nu
ber space. Furthermore, the interpretation of the numer
results is supported by the analysis of a similar but simp
problem: a single-armed spiral in an external velocity fie
created by a point vortex located at the spiral core, in
limit of infinite Prandtl number when the large-scale flo
and the order parameter are decoupled. In addition, we
served, at higher supercriticality and only in the presence
nonvariational nonlinear terms, a transition from spirals
hexagons. Both up- and down-flow hexagons are gener
simultaneously near the spiral core. In our numerics, as w
as in the experiments, the core oscillations always prec
the transition to the hexagonal state. Below, we also pre
experimental data taken from a single spiral embedded
complex pattern texture. The resemblance is rather rem
able.

We considered the well-established model, which d
scribes RBC in a Boussinesq fluid rather successfully@11#,

c t1~u•“ !c5ec2gc313~12g!~“c!2¹2c

2~11¹2!2c , ~1!

V t2s~¹22c2!V5gmẑ•“~¹2c!3“c , ~2!

V5“3u. ~3!

Herec is the order parameter,u the horizontal velocity field
of the large-scale flow, andV the vertical component of the
vorticity. The control parametere represents the reduce
Rayleigh number, whiles characterizes the Prandtl numb
of the fluid. The parameterg allows us to more accuratel
reproduce the stability properties of convection patter
while gm characterizes the coupling strength between the
der parameterc and the vorticityV. The phenomenologica
parameterc is introduced to describe the local dissipation
the vorticity ~e.g., due to friction at the bottom of the con
vection cell! @11,12#. Thus, Eq.~1! describes the dynamics o
the order parameterc, while Eq. ~2!, using the definition of
R4877 © 1997 The American Physical Society
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the vorticity @Eq. ~3!#, represents the coupling of the larg
scale flow fieldu and the order parameter. Forg51 and
gm50 Eqs.~1!–~3! reduce to the Swift-Hohenberg equatio
~SHE!.

We solved Eqs.~1!–~3! in a domain of 2563256 mesh
points using a pseudospectral method based on the fast
rier transform. The physical domain size was typically
stricted to 1503150. Circular boundary conditions were e
forced by rampinge towards negative values at distanc
r.Rmax555. The computations were performed on a par
lel Cray J932 supercomputer, and verified on a 5123512
grid.

We started the simulations from initial conditions of th
form c5cos(qr1nu), where r and u are the polar coordi-
nates,q is the wave number, andn561,62, . . . is the to-
pological charge of the spiral (unu is the number of spira
arms, while the sign corresponds to the chirality!. These ini-
tial conditions relax in about 10 to 20 horizontal diffusio
times to spirals. For sufficiently small values of the para
eterse andgm ~see Fig. 1!, the spirals maintain a stable rigi
rotation with an angular velocity depending both ongm and
e, as well as on the topological chargen @13#. Typical spatial
distributions of the order parameter and the vorticity field
one-armed spirals are shown, e.g., in Ref.@5#. The spiral tip
generates a highly localized vorticity peak at the core@5#.
For n-armed spirals,n identical vortices are created at th
core. Here, the spiral cores are stable and only experien
slow off-center drift if the aspect ratio is not sufficient
large @12#.

For e above some threshold, depending ongm ~see Fig.
1!, we observed a novel spiral core instability. In contrast
the off-center drift, it persists even in an infinite syste
since the unstable mode is localized near the core. The m
feature of the instability is that the spiral core oscillates
the reference frame of the rotating spiral. The critical valu
of the control parametere depend ongm as well as onn. The
bifurcation leading to core oscillations is hysteretic and
bistable region increases withgm . Figure 1 shows the bifur-
cation diagram as a function ofe and gm for n51,2 @13#.
Figure 2 presents typical numerical, as well as experimen
snapshots of the core oscillation for one-armed spirals@14#.
Similar behavior occurs for two-armed spirals.

The core oscillations can be illustrated by comparing

FIG. 1. Stability diagram for one-~a! and two-armed~b! spirals
for c252, s51, andg51. As e increases, the spiral core becom
unstable at the dashed line, regaining stability at the solid line
e decreases.
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temporal behavior of the order parameter at points near
core and at the rim. At the edge, the core oscillations
negligible so that mainly the background rotation is sens
Figure 3 shows plots for one-armed spirals for three val
of e. Figure 3~a! illustrates the rigid spiral rotation, below th
threshold for core oscillations. The central~solid line! and
peripheral points~dashed line! oscillate with the same fre
quency, the unambiguous signature of the spiral’s rigid ro
tion. Figures 3~b! and 3~c! show the spiral dynamics abov
criticality. Here, the core oscillates at a much higher f
quency than the peripheral point. The core thus has a
rotation in the framework of the spiral’s overall rotation.

The corresponding experimental data are shown in Fig
Figure 4~a! shows the rigid body rotation of a one-arme
spiral below the onset of the core instability. Clearly, t
oscillations near and away from the core are phase lock
Figure 4~b! presents a single burst of fast oscillations of t
core above the threshold of the instability. On this short ti
scale the peripheral signal does not vary significantly an
not shown. Similar dynamics were reported in Refs.@8# and
@10#.

Our numerical simulations of the full model@Eqs. ~1!–

s

FIG. 2. Snapshots of periodic spiral core oscillations. Top ro
simulations withe51.45, g50.9, gm527, c252, ands51; time
delay between frames 5 and integration domain radiusR555. Bot-
tom row: experiments withe52.88 ands54.5.

FIG. 3. Order parameterc at the core~solid! and periphery
~dashed! of a one-armed spiral withg51,gm595, s55, and
c251: ~a! below threshold (e51.1); ~b! and ~c! above threshold
(e51.3 and 1.35).
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~3!# suggest that the vorticity generated by the spiral
plays a major role in the core dynamics. Therefore, the or
of the core oscillations can easily be understood—at le
qualitatively—in the framework of the following simplified
model. Consider a one-armed spiral solution of the fo
A(r )cosf, wheref5qr1u, in the framework of the SHE
@Eq. ~1!#, coupled to an external velocity field generated b
fixed point vortex with circulationG, placed at the center o
rotation. The sign of the vortex is chosen to correspond
the self-generated vortex in the full model. Using the ph
approximation@i.e., neglecting the variations of the amp
tude A(r )], we obtain ~see Refs.@12# and @15#!, that
f t52G/r 2]uf1••• . Due to the nonuniform phase rotatio
the local wave number decreases linearly in tim
qt}2G/r 3. In other words, the external velocity field wind
the spiral up near the core. Eventually, the local wave nu
ber will be carried away from the stable band and the E
haus instability will be initiated. This stage can no longer
described within the phase approximation. Abrupt ph
jumps by 2p ~phase slips! consequently emerge and retu
the wave number back into the stable region. This proc
then recurs, leading to quasiperiodic oscillations.

We simulated the spiral dynamics using this simplifi
model, with a velocity profile of the formu5Gr21û, and
observed the above-mentioned scenario. As the magnitud
the circulationG increases, a bifurcation similar to the on
described above occurs. At smallG a steady rotation persists
while for G.Gc the core starts to oscillate.

Recently Assenheimer and Steinberg reported a trans
from the spiral and target chaotic state to a state of up-
down-flow hexagons, as the supercriticalitye increased@9#.
These hexagons started to develop and invade the sy
primarily from spiral and target cores and other defec
Dewelet al. @16# demonstrated that in the framework of th
SHE at largee, the coexistence and linear stability of up- a
down-flow hexagons is caused by the excitation of
quasineutralzero mode, which breaks the local inversio
symmetryc→2c. Despite their linear stability, these hex
gons are nonlinearly unstable because their free energ
the framework of the pure variational SHE (g51, gm50), is
higher than that of rolls. As a result, nuclei of hexago
immersed in rolls, ultimately shrink. Because the generali
SHE @Eqs.~1!–~3!# with eithergÞ1 and/orgmÞ0 is nonva-

FIG. 4. Shadowgraph intensity at the core~solid! and periphery
~dashed! of a one-armed spiral:~a! below threshold (e52.05,
s54.5) and~b! above threshold (e52.88, s54.5). In ~b! only the
fast core signal is shown.
n
st

a

o
e

-
-
e
e

ss

of

n
d

em
.

a

in

,
d

riational, a simple relative stability analysis of rolls vers
hexagons becomes impossible.

Numerics performed with a nonvariational coefficie
12g50.25, relatively large coupling to the vorticit
gm510 ~customary for this model, e.g., Ref.@12#! and su-
percriticality above the threshold for the spiral core instab
ity, e51.9, show that hexagons indeed invade rolls. We h
observed the simultaneous nucleation of up- and down-fl
hexagons at the core which subsequently spread out~see Fig.
5!. Similar dynamics, obtained experimentally, is shown
Fig. 6. However, one might speculate that a local wave nu
ber change near the core, rather than the large-scale fl
causes the transition. To compare, we performed simulat
for the same parameters but without a large-scale flow~i.e.,
g50.75,gm50, ande51.9). In this case spots emerge fro
the side wall rather than from the core region. Thus,
interaction between the large-scale flow and the spiral fl
itself is required for both the spiral-to-hexagon transition
well as for the spiral core instability. Numerically as well a
experimentally, it always precedes the spiral-to-hexag
transition. Based on the results of Ref.@16#, we speculate
that the zero mode must exist when coexisting hexagons
present. It is thus plausible to suggest that the mean fl
near the core locally unwinds the wave number to zero.
such, the spiral core instability generates the zero mode
the order parameter@17#, responsible for the formation of th
coexisting hexagons. Although we do not fully understa

FIG. 5. Hexagon invasion from a spiral core obtained from
full model with e51.9, g50.75, gm510, c252, ands51. Snap-
shots taken att510, 110, 470, 650, 340, and 2350.

FIG. 6. Experimental hexagon nucleation at a spiral core w
e53.19, s54.5, and time delay between framesDt53.6, 3.6,
22.7, 18.0, and 10.7tv .
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the triggering mechanism, the presented observat
strongly support this conjecture.

Summarizing, we studied effects of large-scale flow
the dynamics of a spiral core. Although our computatio
were performed in the framework of a simplified pheno
enological model, two characteristic features of the dynam
were found also observed experimentally: the spiral core
stability and the spiral-to-hexagon transition. The vortic
field generated at a spiral core whengmÞ0, plays a major
role in the spiral oscillations. These oscillations are not
served in the variational model in which the coupling w
the vorticity mode is absent~i.e.,gm50). On the other hand
very similar oscillations are observed in a model with a fix
vortex pinned at the center of rotation of the spiral. At high
supercriticality the vorticity drives the zero mode of the o
rs

ys

c

ns

n
s
-
s
-

-

r

der parameterc by unwinding the spiral and prompts th
hexagon formation. Then, the core oscillations may initi
the transition to the hexagonal state. Certainly, a more
tailed analysis of a physically more justified~but more com-
plicated! model, similar to that of Ref.@6#, is desirable.
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