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The spiral core instability, observed in large aspect-ratio Rayleigta®kconvection, is studied numerically
in the framework of the Swift-Hohenberg equation coupled to a large-scale flow. It is shown that the instability
leads to nontrivial core dynamics and is driven by the self-generated vorticity. Moreover, the recently reported
transition from spirals to hexagons near the core is shown to occur only in the presence of a nonvariational
nonlinearity, and is linked to the spiral core instability. Qualitative agreement between the simulations and the
experiments is demonstratd&1063-651X97)51305-5

PACS numbes): 47.54+r, 47.20.Hw, 05.40tj, 47.27.Te

One of the most intriguing and unexpected recent discovaumber into the stable domain. This instability is found to
eries in natural pattern formation is the experimental obserhave a well-defined threshold in Rayleigh and Prandtl num-
vation of spatiotemporally disordered spiral and target patber space. Furthermore, the interpretation of the numerical
terns[1,2] in large aspect-ratio Rayleigh-Bard convection results is supported by the analysis of a similar but simpler
(RBC) in Boussinesq fluids, in a parameter range where preProblem: a single-armed spiral in an external velocity field
viously only rolls were known to be stabl8]. This regime created by a point vortex located at the spiral core, in the
is characterized by the spontaneous and continuous eméimit of infinite Prandtl number when the large-scale flow
gence and annihilation of large extended spiral and targetnd the order parameter are decoupled. In addition, we ob-
patterns. Theoretically, these novel states were successfulerved, at higher supercriticality and only in the presence of
reproduced both by numerical simulations of the Swift-nonvariational nonlinear terms, a transition from spirals to
Hohenberg(SH) model coupled to a self-consistent large- hexagons. Both up- and down-flow hexagons are generated
scale flow]see Eqs(1)—(3)] [4,5], as well as by the integra- Simultaneously near the spiral core. In our numerics, as well
tion of the full thermally driven Navier-Stokes equations in @s in the experiments, the core oscillations always precede
the Boussinesq approximati(ﬁﬁ]_ It is Currenﬂy postu|ated the transition to the hexagonal state. Below, we also present
that the large-scale flow is necessary for the spatiotempor&xperimental data taken from a single spiral embedded in a
chaotic state with many spirals and targets-7]. In a first ~ complex pattern texture. The resemblance is rather remark-
attempt to understand these states, Cross and Tu proposed@le.
physical mechanism based on wave-number frustration, in We considered the well-established model, which de-
which defects have an invasive nature and create spirals arfgribes RBC in a Boussinesq fluid rather successfully,
targets[7]. In detailed experiments by Assenheimer and
Steinberd8,9], and more recently by Plapp and Bodenschatz Yt (U-V) = ep—gyP+3(1—g)(V§)°V?y
[10], a new instability of spiral cores of single- and multi- —(1+V?)2y (1)
armed spirals was observed. The striking feature of this in- '
stability is that spiral cores oscillate periodically with a fre-

quency considerably higher than the frequency of the overall Q= 0(V?=c?)Q=gpnz- V(V) X Vif, v
spiral rotation[10]. For yet higher supercriticality, a novel
transition from spirals to hexagons was found in which up- Q=Vxu. (©)

and down-flow hexagons may coexji8t9]. These hexagons
often invade the background RBC pattern, originatingHere is the order parameteu, the horizontal velocity field
mainly from extended pattern cores. of the large-scale flow, anf) the vertical component of the
Here, we present numerical simulations of the spiral corgzorticity. The control parametee represents the reduced
dynamics performed in the framework of the SH modelRayleigh number, whiler characterizes the Prandtl number
coupled to a self-consistent large-scale flow. We show thaof the fluid. The parameteay allows us to more accurately
this simple model exhibits both the spiral core instability andreproduce the stability properties of convection patterns,
the spiral-to-hexagon transition, and that both are linked viavhile g,,, characterizes the coupling strength between the or-
the large-scale flow. In the case of the spiral core instabilityder parametey and the vorticity{2. The phenomenological
we demonstrate that the velocity field generated by the spirglarametec is introduced to describe the local dissipation of
tip decreases the local wave number and eventually drivethe vorticity (e.g., due to friction at the bottom of the con-
the tip into the Eckhaus unstable region. Phase slips thewection cel) [11,12. Thus, Eq(1) describes the dynamics of
occur, locally winding the spiral up and returning the wavethe order parameteg, while Eq.(2), using the definition of
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FIG. 1. Stability diagram for oneta) and two-armedb) spirals FIG. 2. Snapshots of periodic spiral core oscillations. Top row:
for c?=2, 0=1, andg=1. As € increases, the spiral core becomes gjmulations withe= 1.45,9=0.9, g,,= 27, c2=2, ando=1; time

unstable at the dashed line, regaining stability at the solid line agelay between frames 5 and integration domain raBlie$5. Bot-
€ decreases. tom row: experiments witle=2.88 ando=4.5.

the vorticity [Eq. (3)], represents the coupling of the large-
scale flow fieldu and the order parameter. Fg=1 and
gm=0 Egs.(1)—(3) reduce to the Swift-Hohenberg equation

temporal behavior of the order parameter at points near the
core and at the rim. At the edge, the core oscillations are
(SHB negligible so that mainly the background rotation is sensed.

' Figure 3 shows plots for one-armed spirals for three values

We so_Ived Eqs(1)—(3) in a domain of 256256 mesh of e. Figure 3a) illustrates the rigid spiral rotation, below the
p_omts using a pseudospe;ctral method based on thg fast Foﬂlfreshold for core oscillations. The centfablid line) and
rlter :r%ntsfoz[?é( Igg %hyS'fal t()ilomzln size \év_?s typically re'peripheral pointgdashed ling oscillate with the same fre-
stricted 1o +o0. Lircuiar boundary conditions were en- quency, the unambiguous signature of the spiral’s rigid rota-
forced by rampinge towards negative values at dlstancestion_ Figures 8) and 3c) show the spiral dynamics above
r>Rya= 55. The computations were performed on a paral

" ‘criticality. Here, the core oscillates at a much higher fre-
IgerlidCray J932 supercomputer, and verified on a>$522 quency than the peripheral point. The core thus has a fast

W d the simulati f initial diti f th rotation in the framework of the spiral’s overall rotation.
e started the simulations from initial conditions o t € The corresponding experimental data are shown in Fig. 4.
form ¢=cos@r+né), wherer and @ are the polar coordi-

. R : Figure 4a) shows the rigid body rotation of a one-armed
natesq is the wave number, amil==1,+2,... isthe - = gy helow the onset of the core instability. Clearly, the
pological charge of the spiralr{ is the number of spiral

. . L -4 oscillations near and away from the core are phase locked.
arms, while the sign corresponds to the chiralithese ini- g re 41) presents a single burst of fast oscillations of the

tial conditions relax in about 10 to 20 horizontal diffusion e aphove the threshold of the instability. On this short time

times to spirals. For sufficiently small values of the param-gc4je the peripheral signal does not vary significantly and is
eterse andg,, (see Fig. 1, the spirals maintain a stable rigid

> . > ) not shown. Similar dynamics were reported in R¢&.and
rotation with an angular velocity depending both @n and [10].

€, as well as on the topological chargg13]. Typical spatial Our numerical simulations of the full modgEgs. (1)—
distributions of the order parameter and the vorticity field for
one-armed spirals are shown, e.g., in RB}. The spiral tip
generates a highly localized vorticity peak at the c[Bg
For n-armed spiralsn identical vortices are created at the
core. Here, the spiral cores are stable and only experience a >
slow off-center drift if the aspect ratio is not sufficiently
large[12].

For € above some threshold, depending @ (see Fig.
1), we observed a novel spiral core instability. In contrast to
the off-center drift, it persists even in an infinite system,
since the unstable mode is localized near the core. The main
feature of the instability is that the spiral core oscillates in
the reference frame of the rotating spiral. The critical values
of the control parameter depend org,,, as well as om. The -1k ST .
bifurcation leading to core oscillations is hysteretic and its 1000 20'00 3000
bistable region increases with,. Figure 1 shows the bifur- time
cation diagram as a function @f and g, for n=1,2 [13].
Figure 2 presents typical numerical, as well as experimental, FIG. 3. Order parametey at the core(solid) and periphery
snapshots of the core oscillation for one-armed spirbds. (dashedl of a one-armed spiral wittg=1,g,,=95, =5, and
Similar behavior occurs for two-armed spirals. c?=1: (a) below threshold é=1.1); (b) and (c) above threshold

The core oscillations can be illustrated by comparing thge=1.3 and 1.35).

order parameter
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FIG. 4. Shadowgraph intensity at the cdselid) and periphery
(dashedl of a one-armed spiral(a) below threshold é=2.05,
o=4.5) and(b) above thresholdgd=2.88, =4.5). In(b) only the
fast core signal is shown.

FIG. 5. Hexagon invasion from a spiral core obtained from the
full model with e=1.9, g=0.75, g,,= 10, c>=2, ando=1. Snap-
shots taken at=10, 110, 470, 650, 340, and 2350.

(3)] suggest that the vorticity generated by the spiral tipriational, a simple relative stability analysis of rolls versus
plays a major role in the core dynamics. Therefore, the origirhexagons becomes impossible.
of the core oscillations can easily be understood—at least Numerics performed with a nonvariational coefficient
qualitatively—in the framework of the following simplified 1—g=0.25, relatively large coupling to the vorticity
model. Consider a one-armed spiral solution of the formg,,=10 (customary for this model, e.g., Rdfl2]) and su-
A(r)cosp, wherep=qr+ 6, in the framework of the SHE percriticality above the threshold for the spiral core instabil-
[Eq. (1)], coupled to an external velocity field generated by aity, e=1.9, show that hexagons indeed invade rolls. We have
fixed point vortex with circulatiod”, placed at the center of observed the simultaneous nucleation of up- and down-flow
rotation. The sign of the vortex is chosen to correspond tdhexagons at the core which subsequently sprea@seetFig.
the self-generated vortex in the full model. Using the phas&). Similar dynamics, obtained experimentally, is shown in
approximation[i.e., neglecting the variations of the ampli- Fig. 6. However, one might speculate that a local wave num-
tude A(r)], we obtain (see Refs.[12] and [15]), that ber change near the core, rather than the large-scale flow,
¢=—T1Ir?9,¢+--- . Due to the nonuniform phase rotation, causes the transition. To compare, we performed simulations
the local wave number decreases linearly in timefor the same parameters but without a large-scale fia,
a.=—T'/r3. In other words, the external velocity field winds g=0.75,9,,=0, ande=1.9). In this case spots emerge from
the spiral up near the core. Eventually, the local wave numthe side wall rather than from the core region. Thus, the
ber will be carried away from the stable band and the Eckinteraction between the large-scale flow and the spiral flow
haus instability will be initiated. This stage can no longer beitself is required for both the spiral-to-hexagon transition as
described within the phase approximation. Abrupt phasevell as for the spiral core instability. Numerically as well as
jumps by 27 (phase slipsconsequently emerge and return experimentally, it always precedes the spiral-to-hexagon
the wave number back into the stable region. This processansition. Based on the results of Rg16], we speculate
then recurs, leading to quasiperiodic oscillations. that the zero mode must exist when coexisting hexagons are

We simulated the spiral dynamics using this simplifiedpresent. It is thus plausible to suggest that the mean flow
model, with a velocity profile of the fornu=Ir~19, and near the core locally unwinds the wave number to zero. As
observed the above-mentioned scenario. As the magnitude 8¢ch, the spiral core instability generates the zero mode of
the circulationl” increases, a bifurcation similar to the one the order paramet¢d7], responsible for the formation of the
described above occurs. At smilla steady rotation persists, Coexisting hexagons. Although we do not fully understand
while for I'>T"; the core starts to oscillate.

Recently Assenheimer and Steinberg reported a transition ===y
from the spiral and target chaotic state to a state of up- and g e
down-flow hexagons, as the supercriticaléyncreased9].

primarily from spiral and target cores and other defects.
Dewel et al. [16] demonstrated that in the framework of the
SHE at largee, the coexistence and linear stability of up- and
down-flow hexagons is caused by the excitation of a
guasineutralzero mode, which breaks the local inversion
symmetryy— — . Despite their linear stability, these hexa- AN
gons are nonlinearly unstable because their free energy, in ‘s

the framework of the pure variational SHg£1,g,,=0), is

higher than that of rolls. As a result, nuclei of hexagons, F|G. 6. Experimental hexagon nucleation at a spiral core with
immersed in rolls, ultimately shrink. Because the generalized@=3.19, ¢=4.5, and time delay between framé¢=3.6, 3.6,
SHE[Eqgs.(1)—(3)] with eitherg# 1 and/org,# 0 is nonva- 22.7, 18.0, and 10.%, .



RAPID COMMUNICATIONS

R4880 ARANSON, ASSENHEIMER, STEINBERG, AND TSIMRING 55

the triggering mechanism, the presented observationder parameter) by unwinding the spiral and prompts the

strongly support this conjecture. hexagon formation. Then, the core oscillations may initiate
Summarizing, we studied effects of large-scale flow onthe transition to the hexagonal state. Certainly, a more de-

the dynamics of a spiral core. Although our computationstailed analysis of a physically more justifi¢but more com-

were performed in the framework of a simplified phenom-piicated model, similar to that of Ref.6], is desirable.
enological model, two characteristic features of the dynamics

were found also observed experimentally: the spiral core in- |.A. was supported by the Raschi Foundation and Israeli
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the vorticity mode is abseite., g,=0). On the other hand, Weizmann Institute of Science. Support by the Minerva Cen-
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supercriticality the vorticity drives the zero mode of the or-
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